Picosecond laser ablation of SiO2 layers on silicon substrates
Applied Physics A - Materials Science & Processing
1
99
1-8
2009
Type: Zeitschriftenaufsatz (reviewed)
Abstract
In this work, we report on laser ablation of thermally grown SiO2 layers from silicon wafer substrates, employing an 8–9 ps laser, at 1064 (IR), 532 (VIS) and 355 nm (UV) wavelengths. High-intensity short-pulse laser radiation allows direct absorption in materials with bandgaps higher than the photon energy. However, our experiments show that in the intensity range of our laser pulses (peak intensities of 2×1012 W/cm2) the removal of the SiO2 layer from silicon wafers does not occur by direct absorption in the SiO2 layer. Instead, we find that the layer is removed by a “lift off” mechanism, actuated by the melting and vaporisation of the absorbing silicon substrate. Furthermore, we find that exceeding the Si melting threshold is not sufficient to remove the SiO2 layer. A second threshold exists for breaking of the layer caused by sufficient vapour pressure. For SiO2 layer ablation, we determine layer thickness dependent minimum fluences of 0.7–1.2 J/cm2 for IR, 0.1–0.35 J/cm2 for VIS and 0.2–0.4 J/cm2 for UV wavelength. After correcting the fluences by the reflected laser power, we show that, in contrast to the melting threshold, the threshold for breaking the layer depends on the SiO2 thickness.