Dipyridamole increases gap junction coupling in bovine GM-7373 aortic endothelial cells by a cAMP-protein kinase A dependent pathway
Journal of Bioenergetics and Biomembranes
1
42
79-84
2010
Type: Zeitschriftenaufsatz (reviewed)
Abstract
The scrape-loading/dye transfer technique was applied on the bovine aortic endothelial cell line GM-7373 to analyze the effects of the antithrombolytic drug dipyridamole on gap junction coupling in endothelial cells. We found that a cell treatment for 24 h with dipyridamole in therapeutically relevant concentrations (1-100 microM) increased gap junction coupling in a dose dependent manner. Similar to dipyridamole, forskolin as well as 8-Br-cAMP increased the gap junction coupling, while dibutyryl-cGMP (db-cGMP) did not affect the gap junction coupling of the GM-7373 endothelial cells. In parallel, a pharmacological inhibition of protein kinase A (PKA) with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-89), antagonised the action of dipyridamole on gap junction coupling. We propose that the observed dipyridamole induced increase in gap junction coupling in endothelial cells is related to a cAMP-PKA dependent phosphorylation pathway. The report shows that gap junction coupling in endothelial cells is a suitable therapeutic target for treatment of cardiovascular diseases.