Mechanisms of high-order photobleaching and its relationship to intracellular ablation
Biomedical Optics Express
4
2
805-816
2011
Type: Zeitschriftenaufsatz (reviewed)
DOI: 10.1364/BOE.2.000816
Abstract
In two-photon laser-scanning microscopy using femtosecond laser pulses, the dependence of the photobleaching rate on excitation power may have a quadratic, cubic or even biquadratic order. To date, there are still many open questions concerning this so-called high-order photobleaching. We studied the photobleaching kinetics of an intrinsic (enhanced Green Fluorescent Protein (eGFP)) and an extrinsic (Hoechst 33342) fluorophore in a cellular environment in two-photon microscopy. Furthermore, we examined the correlation between bleaching and the formation of reactive oxygen species. We observed bleaching-orders of three and four for eGFP and two and three for Hoechst increasing step-wise at a certain wavelength. An increase of reactive oxygen species correlating with the bleaching over time was recognized. Comparing our results to the mechanisms involved in intracellular ablation with respect to the amount of interacting photons and involved energetic states, we found that a low-density plasma is formed in both cases with a smooth transition in between. Photobleaching, however, is mediated by sequential-absorption and multiphoton-ionization, while ablation is dominated by the latter and cascade-ionization processes.